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Abstract
• We have reconstructed images of two-dimensional

non-periodic phase objects from their experimental
coherent soft-X ray transmission diffraction patterns
using the iterative Hybrid Input-Output (HiO) algorithm
[1,2]. Agreement between the reconstruction and SEM
images of the same object was obtained by applying a
sign constraint and a stabilizing procedure. Low
resolution images were used to provide a disjoint
support. Resolution in these images of 50nm diameter
gold balls is estimated to be about 10nm.

[1] J. R. Fienup, J. Opt. Soc. Am. A 4, 118 (1987) and references therein.
[2] J. Miao, P. Charalambous, J. Kirz, and D. Sayre, Nature (London) 400,

342 (1999).



Why Iterative HiO?

• No lenses are needed, no aberrations, the
only limit to resolution is wavelength

• No crystal needed, non-periodic sample
OK

• 3D tomography possible.
• Opens up possibility of imaging with

radiations for which no lenses exist



Phase Problem

Self consistent
equations
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Problem: Missing phase information in k-space, half of the information.

Solution: ‘Over’ sampling. In real space, the object is known to be 0 outside
a support s.

If S=FFT(s) is non-null in at least 2X2 pixels, the self consistent equations
bound each pixels with enough constraints
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F (same diffracted intensities)

P (positive charge 
densities,

given support)

p p'

ConvexO
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Not Convex
0

Uniqueness.
Eqns no longer impossible
to solve. But non-linear !
The non-linear eqns may not
be independant. Barakat,
Newsam (1984) show multiple
solns for 2-D complex are
"pathologically rare".
(Analyticity, with support. )

Examples of convex constraints:
Symmetry, Positivity, Atomicity,
Compact support, Non-convex:
Fourier modulus, phase object
(phase must move on circle with
thickness).

Global Optimization.
2. Find metric χ2 which
measures similarity of
members in each set.
3. Iterate between most similar
elements of each set to find
solution.

F0

closest point
within the set

‘orthogonal’
projection
(Bregman)

Phase Solution



Error Reduction (ER)

Known:
•k-space amplitude:

|F|
•Support s in real space:

f=0 for s=0
Unknown:

•Phase in k-space
ϕ

•Image inside the support
f=? For s=1

Self consistent
equations
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Hybrid Input Output (Fienup)
Error reduction:

f=f·s

The step outside the
support is relaxed, with
a parameter 0.5<β<1.
β=1 corresponds to a
full step.

The idea is derived from
the conjugate gradient
method.

HIO

f’=f·s+(fold-β f)· (1-s)
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F=|F|eiϕ
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a b

c d

A. Object - pinholes, 10nm diam.
B. Incident 2.5nm soft Xray wavefield
from 1 micron aperture at 200nm.
C, Speckle pattern.
D. Reconstruction,150 itns (inverted) 

Triangular support used (just visible)
in d.

Phase problem solved for non-periodic
object !

Note: convergence is 
independent of the particular
set of randomly chosen
phases we start with.

Simulation example (real object)

U. Weierstall et al 
Ultramic. 90, p.171 (2002). 
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Error is goodness of fit index for known zero region outside triangle.
Rely on uniqueness theorem to establish that if i) image is correct (zero)
in known region, and ii) Fourier modulus is correct (measured), then image
must be correct within unknown support region.

Coherent diffraction from
this width  W.

Support

Decline of error with iteration for typical simulated real object.
U. Weierstall et al 
Ultramic. 90, p.171 (2002). 



a b c

d e

HiO simulation for complex object
(requires “two-hole” disjoint support).

“Complex object” means phase shift exceeds π/2.

a. Simulated object: electron 
    wavefield at thin silicon crystal
b. Diffraction pattern. Wavelength
    0.025 Angstroms.
c. Support assumed,bigger than holes.
d. reconstruction after 100 itns.
e. Reconstruction after 3000 itns.

Note: Because support does not 
exactly match holes, convergence
is slow.

cf FT Holography. No beam-stop problem

U. Weierstall et al 
Ultramic. 90, p.171 (2002). 
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Unknown object.

CCD camera

Θ

pixels

Plane
wave

Experimental requirements for lensless imaging.

1. Lateral coherence width must exceed W > 2D. 
2. Temporal coherence across W to resolution required.  E/∆E = linear number of pixels.
3. Diffract from width W larger than known size D of object. Hence W = λ / Θ   >  2D  fixes working distance.
    (First order “Bragg beam” at Θ  corresponds to a periodicity larger than object, ensuring oversampling
      The number of pixels fixes largest scattering angle and hence resolution).



Soft x-ray imaging (Miao et al. Nature 1999)

A Reconstructed Image
(after 400 iterations)

The Diffraction PatternSEM Image

The convergence of the
reconstructions



3D soft x-rays: Tomographic HiO
J. Miao, T. Ishikawa, B. Johnson, E. H. Anderson, B. Lai, and K. O.
Hodgson, Phys. Rev. Lett. 89,

HiO reconstruction in 3-D from coherent 2 Angstrom XRD patterns.  Resolution is 55nm. 
Spring-8.  Double xtal Si mono., undulator. Lithographed Ni multilayer structure. Low res image from ALS
XM1.  (innermost 60 X 60 pixels). Recording time 20 mins for each of 31 patterns needed. Computing power
limits data collection to 55nm resolution in 3D, could be 28nm. (2D res. is  8nm).

1. Miaow’s 8nm res. is from
diffraction pattern.

2. XM1 “low res” image is
almost as good.

3. Miaow uses only inner 60
pixels from XM1 image.

1. Miaow’s 8nm res. is from
diffraction pattern.

2. XM1 “low res” image is
almost as good.

3. Miaow uses only inner 60
pixels from XM1 image.



Visible light (2D)
J. Spence et al. Phil Trans. "Thomas Young" issue. 2001.

U. Weierstall et al. Ultramic. 90, p.171 (2002).

He-Ne laser
λ = 632.8nm

Collimator

Object with support mask

CCD detectorf

Lens diffracti on pattern
Double polarizer
to adjust intensi ty

Diffraction pattern

0 iterations 50 iterations 100 iterations



1mm

Illumination

direction,
 λ = 633nm

b c

plane 2

plane 1

Visible light (3D)
U. Weierstall et al. Ultramic. 90, p.171 (2002).

J. Spence et al. Phil Trans. "Thomas Young" issue. 2001.

300µm holes
with complex number 
objects:
transparency 20%
phaseshift 2 rads in
 letter

a



a b

20nm

cd

a) Diffraction pattern of two-hole
object in c).
b) Image reconstructed by HiO
after 100 iterations.
c) TEM image of object.
d) FT of TEM image.

Conditions:
Field-emission gun, 40 kV,
Lithographed object
Philips CM200  CCD camera.

Weierstall et al Ultramic
90, p. 171 (2002).

Coherent electrons
J. Spence et al. Phil Trans. "Thomas Young" issue. 2001.

Note that opaque support
solves beam-stop problem !
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(rip)

rip
(Miao X-ray
exp.,
Transparent
support)

rip, ca

rip, ca

 weak-phase
object with
absorption

Real (amplitude)
object

Pure “weak”
phase object:
φ<π/2

Pure strong
phase object
Ψ =exp(iφ(r))

General complex
object
Ψ =Aexp(iφ)

(m, rip)(rip)--Unknown one
hole phys.
support

m (TEM exp.:
holes)
(Laser exp.:
numbers)
(planned: X-ray,
mica pinholes)

rip--Unknown two or
more  hole phys.
support

m, rip, ca

(Laser exp.:
numbers)

rip, caca, slow
convergence,
p works better

ca, only for
certain support
shapes (e.g.
triangle with
sharp edges)

Known one hole
phys. support

m, rip, carip, caca, p
(Laser exp.:
mica)

ca,
(Laser exp.: pin,
cheek cells)

Known two or
more hole
physical support

Summary: HiO for 2-D, Opaque Supports

ca - complex algorithm
rip - positivity of ReF, ImF in real space
m - modulus constraint on F in real space
p - phase constraint on F, set modulus = 1 in real space.



Experiment (soft X-rays)

Layout of the diffraction chamber used for this experiment
at BL 9.0.1 at Advanced Light Source, LBL

Zone plate
monchromator Energy

dispersion slit .
25 microns

Field limiting
aperture. 5 microns

Sample Gold
balls on SiN.

80 mm 25 mm 105 mm

Mirror 2
and PT 2

Long WD External
Optical
Microsocope

Beam
stops

Removable
Photodiode 1,
Absorption filter.

Mirror 1
Phosphor

E = 588 eV
2.1nm wavelength

BL 9.0.1  ALS
(Undulator)
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• Diffraction: 2.3 µm
• Geometrical image: 2.3 µm
• Source bandwidth:20 µm
• Slit size: 25 µm
• Defocus: 90 µm

Peak width
contributions

• Overall calculated value: 96 µm
• Measured value: 110 µm



Sample

• Sample: 50 nm gold balls randomly distributed on SiN
window (~100nm thickness and 2×2 µm2)

• Wavelength 2.1nm (588 eV)
• Detector: 1024 × 1024 Princeton back-illuminated CCD

SiN 100nm

Si substrate

Au 50nm

Side view of sample



•Small SiN windows of around 2×2 µm have solved many of our problems - eg
how to make an isolated sample with known support.

•Do not produce excessive stray X-rays due to edge scattering like laser-drilled
metal pinholes - the edge is too short to have much scattering power

•Their diffraction pattern is visible outside the beam-stop from which the
dimensions of the window can be found.

•They provide sample isolation inside a known and tight support compatible with
oversampling. How to make an isolated sample of submicron dimensions ?

•They reduce strength of direct beam sufficiently that beam stop can be removed,
allowing central region of pattern to be recorded with filters (No missing data)

•Stray light is reduced in proportion to window size
•Coherence width of beam need be only equal to window width.
•They simplify the problem of finding the isolated sample, otherwise almost

impossible. (2D search over 0.1mm square area for submicron object).

SMALL WINDOWS



Sample

(b) Positions of balls
extracted from SEM
image in fig. 5(a). The
position of the window
is shown
approximately.

Simulation of SiN window
and surrounding Si wedge
transmission which
produce the central
diffraction pattern shown in
fig. 3(b).

0

1
C D

(a) SEM image of sample
which produced the
diffraction pattern in fig. 2.
The dark square in the
center is the 100nm-thick
silicon nitride membrane
(see also fig. 5(c)). See fig.
4(a) for correspondence
of C and D.



Diffraction pattern

• Fig. 2(a) Experimental diffraction
pattern from sample Au5010. The
pattern has been averaged by
inversion, and contains artifacts
from camera readout. The dark
region in the center and edge and in
between are missing data.

• Fig. 2(b) Simulated pattern based
on ball positions obtained from an
SEM image of the same object.
SEM image is shown in figure 5(a)



Diffraction pattern

• Fig. 3(a) Central region of a pattern
similar to fig. 1, showing 1mm beam
stop bead and the sinc-function like
pattern from the silicon nitride
window. Additional streaks are seen
which arise from the valleys running
from the corners of the SiN
windows.

• Fig. 3(b) Simulated soft X-ray
diffraction pattern from silicon
nitride window (see fig. 5(c)) with 54
degree wedge-shaped borders. The
pattern is in good agreement with
Fig. 3(a).



Autocorrelation

• Fig. 4 (a) Fourier transform of the
intensity distribution shown in Fig.1.
This is the autocorrelation (Patterson)
function of the object. This is a map of
all interball vectors with a common
origin. Note single ball features at  C and
D, which correspond to the balls in the
SEM image fig. 5 marked at C and D.

• Fig. 4(b) As a comparison,
autocorrelation function obtained from
SEM image (fig. 5(b)) is shown.

C D



Autocorrelation

c

d

Enlarged portion of autocorr fn,
showing real-space images of
several clusters as formed by
convolution with one isolated ball.
Fig. 4(d) The real-space structure
obtained from the SEM image,
indicating the inter-ball vectors
identified in fig. 4(c).



HiO+ for Reconstruction
• A slight change of the basic HiO

has improved the reconstruction
process when missing data is
present (eg due to beam stop):

    In step 2, instead of replacing
|F’(u)| with full |F|, we replace |F'|
only with known data, while
allowing the missing data region to
float. The idea is to treat the
missing data as unknown
information just like the missing
phase information.
This is a general modification to
HiO, doesn’t depends on the
specific problem.

• Other constraints also greatly
help the reconstruction
process such as:

• a). Positivity constraint: in our case,
the gold ball is a phase object, the
maximum phase shift θ is less than
π/2. Thus the real and imaginary
part of the transmissivity exp(i θ) of
ball are both positive

• b). A unit modulus constrain may
be applied to a pure phase object.

• c) A binary object constraint allows
only two complex object values.



Reconstruction results

• Fig. 6(b) A better reconstruction of
the same experimental data when
unknown data are left floating, a
positive sign constraint is used on
gold balls, with 150 iterations. The
same support is used. The HiO
extracts internal detail (see fig 8).

• Fig. 6(a) Result of 420 iteration of
HiO algorithm applied to
experimental data of fig. 2(a) wihout
using sign constraint. Support
consists of boundaries drawn
around clusters in SEM image. Note
how balls outside window on Si
wedges appear darker.



Reconstruction results

• Fig. 7  Enlargement of  inner
clusters shown in fig. 6(b) , showing
internal detail.

• Fig. 8 Enlargement of inner cluster
compared with SEM image (lower).

• The ball diameter is 50nm, the Xray
wavelength is 2.1nm.



Reconstruction with other
constraints

• We failed to reconstruct the image using only the positive sign
constraint and without the stabilizing procedure. We note that the
positive sign constraint works well alone with simulated data. Its
failure with experimental data shows the insufficiency of this
constraint with noisy data.

• Other constraints (eg modulus, binary object constraint) were also
tried without success.

• Further attempts to model the Si wedge (which is partially
transparent to our soft X-rays) and apply it as a constraint to the
reconstruction are in progress. This will be useful if no balls lie on
the partially transparent regions of silicon.

• Gold index of refraction constrain is being tried



Where is this technique going ?
1. Other methods:

Cryomicroscopy (Baumeister): whole cells at 4nm res. in 700nm thick ice.
Main problem: damage from many tilts. Cell size 0.5 micron.

XM1 1-5 (?)  µm thick unstained protein in 5 µm thick ice. Res. 25nm

HVEM  ultramicrotome tomography. Stained. 5 µm. 2nm res. Tedious!

Use HiO to phase FEL data. Pulsed XRD from individual molecules.
Tomographic SEM. Paul Midgely’s movie.

2. The challenge: Find the atomic coordinates of every atom in a single
inorganic nanostructure. Use DM and HiO with harder X-rays.  Need...



Summary.
•simulations work perfectly with noise to solve the phase problem for non-
periodic objects. For real object (X-ray diffraction) requires only a rough
estimate of the size of the object. HiO works better in 3-D (tomography). Phase
shift across one voxel is always small.

•HiO applied to laser-light experimental data works well.

•HiO applied to coherent electron diffraction gives 1nm resolution. But use of
imaging mode on TEM gives 0.1 nm resolution ! Limits not understood.

•HiO applied to X-ray data works well if combined with low-resolution image.
Attempts to use the autocorrelation function to define a support are in progress.
Some missing data can float freely in the iterations if sufficient constraints
compensate the missing information. The resolution is about 10 nm.

• Use of micron-sized SiN windows solves many problems, including how to
make and handle an isolated submicron object. (e.g from solution, ink-jet, laser
tweezers).


